2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
6、商不变的规律:在除法里,被除数和除数同时乘(或除以)相同的倍数(0除外),商不变。O除以任何不是O的数都得O。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小,分母小的反而大。
16、真分数:分子比分母小的分数叫做线、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
25、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商
k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)26、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)
29、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
30、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公因数。(或几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做最大公因数。)
32、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
33、通分:把异分母分数分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
34、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公因数)
35、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。37、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
39、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。1不是质数,也不是合数。
41、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
43、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414……
44、无限小数和有限小数。一个数的小数位数是无限的小数叫无限小数。一个数的小数位数是有限的小数叫有限小数
细心推敲,巧找单位“1”分数、百分数应用题在日常生产和生活中的作用非常广泛,是小学数学的重要内容,也是小学数学教学中的难点。因为分数百分数应用题比较抽象,学生理解起来有一定的难度,部分学生不是真正地理解,而是生硬地模仿,死搬硬套。究其原因,都是方法不当。其实,分数百分数应用题并不可怕,抓住关键内容,认真分析,是有一定规律可遵循的。
1”。那什么是单位“1”呢?在题中至少有两个量,而那个作为参照的量就是单位“1”,也就是和谁比,谁就是单位“1”。常用找单位“1”的方法:
、抓住题中有数量关系句子的关键词(1)、“谁占(相当、是)谁的几分之几”的语句。这儿的“几分之几”前面那个量就是单位“1”。例如:“男生人数占全班的 1/4”或“男生人数相当于全班的1/4 ”中的单位“1”是全班人数,男生人数所对应的分率是1/4 。
(2)“比谁多或少几分之几”的语句。这里的“谁”一定是单位“l”的量,也就是“比”后面的量。例如:实际比计划增产2/5。计划的量是单位“1”,增产的量占计划的2/5 ,而实际的量是计划的(l+2/5)
”像语文中的省略句一样会省略掉。如:水结成冰,体积增加1/11,这里是指水变成冰的体积增加了水的1/11,那水的体积就是单位“1”,而冰的体积应是水的(1+1/11 ),增加的体积是水的1/11。有的解决问题虽然没有直接说出占谁的几分之几,但根据上下文的意思就可以找出单位“
”。如:“一条水渠,已修了30%.”这种问题一般是将整体看作单位“1”。还有的题目会直接说“降低了几分之几”,这时就必须明白是降低了原来的几分之几。如:“现在的成本降低了